对于低温物理或电磁领域的业内人士来说,电磁炮从来都不是高不可攀神秘的产物。
十九世纪初期,挪威人就建造了世界上第一台概念性的电磁炮模型,在如火如荼的二战时期,第三帝国、日本军部、美国国家实验室都对电磁炮进行了深入的研究,期待其能成为划时代的武器,从而改变战争的进程。
不过受限于当时的冶金、数学、工程技术水准的制约,电磁炮在实用性方面的进展几乎停滞不前,除了理论上的美好希望之外,在工程应用上近乎在永夜的黑暗中徘徊,丝毫看不出任何可以突破的迹象。
二战结束之后,认识到目前人类科技绝对无法解决稳定的瞬时巨大能源供应、小型化、散热等技术关卡之后,世界各国近乎放弃了电磁炮的展,转而把注意力集中在导技术上,期望从这里获得突破,进而解决电磁炮技术实用化的难关。
毕竟,从人类已知的科学上推断,除了导系统没有其他方式可以满足电磁炮在小型化、瞬时能源巨大化等多方面要求。
虽然全世界的科学家在导材料上投入了无数的精力和金钱,但从二战至期,突破性的进展完全没有,科学界依旧在原来的圈子里转悠,直到6年,瑞士苏黎世ib公司的柏诺兹和缪勒才为导材料界带来了一线曙光。
两人在实验时没有从常见的金属合金体系中去寻找更高转变温度的导体,而是选择从一般认为导电性不好的陶瓷材料中去探索导电性,结果他们在ba体系中次现了可能存在导电性,其tc进入导状态的转变温度高达35k。
这一现引了世界范围高温导研究的热潮,随后上演了一场空前激烈的刷新tc记录的争夺战。在某人被扔进这个时空之前。美国休斯顿大学的朱经武、吴茂昆研究组和中国科学院物理研究所的赵忠贤研究团队,分别现在yba2k以上的tbsp至此导研究次成功突破了液氮温区液氮的沸点为77k,使得导的大规模研究和应用成为可能。之后,在1925k的化合物。把高温导材料的转变温度提升至新的高峰。
在高温导材料现之前,近乎所有的导体都需要在液氦的冷却下才能达到转变温度,而在地球上,氦气在大气中的含量极微平均只有百万分之五,人类平时使用的液氦近乎属于不可再生资源,主要产自天然气。在天然气中氦气的最高含量可达75,是空气的一万五千倍。
不过天然气中的氦气是铀之类的放射性元素衰变的产物。只有在天然气矿附近有铀矿时,氦气才能在天然气中汇集,这种高氦的天然气矿藏在全球并不多,从全球含氦天然气储量的分布上看,美国拥有全球储量的5o以上。具有决定性的垄断地位,而共和国占全球储量的份额只有可怜的o2。
赵亦农给少年班演示液氦的流动性和导现象时,使用的液氦不过2升多,就算液氦价格较为低廉的八十年代,这两个实验的成本依旧接近3o美元,而实用化电磁炮预估需要的导冷却剂是以吨来计算的,就算美国人财大气粗。作为日常使用需要服役十数年的战争工具