一束波的波谷相重合。这两束波互相抵消,而不是像人们预料的那样,迭加在一起形成更强的波(图)。一个熟知的光的干涉的例子是,肥皂泡上经常能看到颜色。这是因为从形成泡沫的很薄的水膜的两边反射回来的光互相干涉而引起的。白光含有所有不同波长或颜色的光波,从水膜一边反射回来的具有一定波长的波的波峰和从另一边反射的波谷相重合时,对应于此波长的颜色就不在反射光中出现,所以反射光就显得五彩缤纷。
图
由于量子力学引进的二重性,粒子也会产生干涉。一个著名的例子即是所谓的双缝实验(图)。一个带有两个平行狭缝的隔板,在它的一边放上一个特定颜色(即特定波长)的光源。大部分光都射在隔板上,但是一小部分光通过这两条缝。现在假定将一个屏幕放到隔板的另一边。屏幕上的任何一点都能接收到两个缝来的波。然而,一般来说,光从光源通过这两个狭缝传到屏幕上的距离是不同的。这表明,从狭缝来的光到达屏幕之时不再是同位相的:有些地方波动互相抵消,其他地方它们互相加强,结果形成有亮暗条纹的特征花样。
图
非常令人惊异的是,如果将光源换成粒子源,譬如具有一定速度(这表明其对应的波有同样的波长)的电子束,人们得到完全同样类型的条纹。这显得更为古怪,因为如果只有一条裂缝,则得不到任何条纹,只不过是电子通过这屏幕的均匀分布。人们因此可能会想到,另开一条缝只不过是打到屏幕上每一点的电子数目增加而已。但是,实际上由于干涉,在某些地方反而减少了。如果在一个时刻只有一个电子被发出通过狭缝,人们会以为,每个电子只穿过其中的一条缝,这样它的行为正如同另一个狭缝不存在时一样——屏幕会给出一个均匀的分布。然而,实际上即使电子是一个一个地发出,条纹仍然出现,所以每个电子必须在同一时刻通过两个小缝!
粒子间的干涉现象,对于我们理解作为化学和生物以及由之构成我们和我们周围的所有东西的基本单元的原子的结构是关键的。在本世纪初,人们认为原子和行星绕着太阳公转相当类似,在这儿电子(带负电荷的粒子)绕着带正电荷的中心的核转动。正电荷和负电荷之间的吸引力被认为是用以维持电子的轨道,正如同行星和太阳之间的万有引力用以维持行星的轨道一样。麻烦在于,在量子力学之前,力学和电学的定律预言,电子会失去能量并以螺旋线的轨道落向并最终撞击到核上去。这表明原子(实际上所有的物质)都会很快地坍缩成一种非常紧密的状态。丹麦科学家尼尔斯·玻尔在1913年,为此问题找到了部分的解答。他认为,也许电子不能允许在离中心核任意远的地方,而只允许在一些指定的距离处公转。如果我们再假定,只有一个或两个电子能在这些距离上的任一轨道上公转,那就解决了原子坍缩的问题。因为电子除了充满最小距离和最小能量的轨道外,不能进一步作螺旋运动向核靠近。
对于最简单的原子——氢原子,这个模型给出了相当好的解释,这儿只有一